AP<sup>®</sup> Statistics Course Framework\* (CF) Alignment

to

Introduction to Statistical Investigations: AP<sup>®</sup> Edition



https://www.isi-stats.com/APindex.html

| CF<br>Unit | Title                       | Chapter and Section References                                                                                                                                                                                               | Description                                                                                                                        |
|------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 1          | Exploring One-Variable Data | CATEGORICAL<br>1.1 Introduction to Chance Models<br>5.1 Comparing Two Groups: Categorical Response<br>5.2 Comparing Two Proportions: Simulation-Based<br>Approach<br>5.3 Comparing Two Proportions: Theory-Based<br>Approach | Frequency tables and bar charts; marginal<br>and joint frequencies for two-way tables;<br>comparing distributions using bar charts |
|            |                             | QUANTITATIVE<br>P.2 Exploring Data                                                                                                                                                                                           | Dotplot: center, shape, variability, outliers, and unusual features                                                                |

|   |                             | <ul><li>6.1 Comparing Two Groups: Quantitative<br/>Response</li><li>6.1 Part 2: Comparing Distributions for a<br/>Quantitative Response Variable</li></ul> | Dotplot, Stemplot, and Boxplot: center,<br>shape, variability, outliers, and unusual<br>features; summarizing distributions of<br>univariate data (measuring center and<br>variability); comparing distributions of<br>univariate data (dotplots, back-to-back<br>stemplots, parallel boxplots); cumulative<br>frequency plot |
|---|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                             | 7.2 Simulation-Based Approach to Analyzing Paired Data                                                                                                     | Comparing distributions of univariate data<br>(dotplots, back-to-back stemplots, parallel<br>boxplots)                                                                                                                                                                                                                        |
|   |                             | 2.1 Sampling from a Finite Population                                                                                                                      | Histogram                                                                                                                                                                                                                                                                                                                     |
|   |                             | 2.2 Inference for a Single Quantitative Variable                                                                                                           | Measuring center (mean, median, resistance to extreme values)                                                                                                                                                                                                                                                                 |
|   |                             | 1.3 Alternative Measure of Strength of Evidence                                                                                                            | Measuring position (quartiles, percentiles, standardized scores (z-scores)                                                                                                                                                                                                                                                    |
|   |                             | 11.7 Continuous Random Variables and the Normal Distribution                                                                                               | Properties of the normal distribution; using<br>tables of the normal distribution; the<br>normal distribution as a model for<br>measurements                                                                                                                                                                                  |
|   |                             | 11.5 Random Variable Rules                                                                                                                                 | The effect of changing units on summary measures                                                                                                                                                                                                                                                                              |
| 2 | Exploring Two-Variable Data | 10.1 Two Quantitative Variables: Scatterplots and<br>Correlation<br>10.2 Inference for the Correlation Coefficient:<br>Simulation-Based Approach           | Analyzing patterns in scatterplots;<br>correlation and linearity                                                                                                                                                                                                                                                              |

|   |                                                                 | 10.3 Least Squares Regression                                                                                                                                                               | Least-squares regression line; residual                                                                                                                                                                                                                                         |
|---|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                 | 10.3 Part 2 More on Least Squares Regression                                                                                                                                                | plots; outliers and influential points                                                                                                                                                                                                                                          |
|   |                                                                 | 10.3 Part 3 Transformations to Achieve Linearity                                                                                                                                            | Logarithmic and power transformations                                                                                                                                                                                                                                           |
| 3 | Collecting Data                                                 | PLANNING AND CONDUCTING SURVEYS                                                                                                                                                             |                                                                                                                                                                                                                                                                                 |
|   |                                                                 | <ul><li>2.1 Sampling from a Finite Population</li><li>2.1 Part 2 More on Simple Random Samples</li><li>2.1 Part 3 Stratified and Cluster Random Samples</li></ul>                           | Census, sample survey; characteristics of a<br>well-designed and well-conducted survey;<br>populations, samples, and random<br>selection; sources of bias in sampling and<br>surveys; sampling methods (simple random<br>sample, stratified random sample, cluster<br>sampling) |
|   |                                                                 | <b>PLANNING AND CONDUCTING EXPERIMENTS</b><br>4.1 Association and Confounding<br>4.2 Observational Studies versus Experiments<br>4.3 Design of Experiments: Completely<br>Randomized Design | Characteristics of a well-designed and well-<br>conducted experiment; treatments, control<br>groups, experimental units, random<br>assignments and replication; sources of<br>bias and confounding including placebo<br>effect and blinding; completely randomized<br>design    |
|   |                                                                 | 4.2 Observational Studies versus Experiments                                                                                                                                                | Generalizability of results and types of<br>conclusions that can be drawn from<br>observational studies, experiments, and<br>surveys                                                                                                                                            |
|   |                                                                 | 4.4 Design of Experiments: Block Design                                                                                                                                                     | Randomized block design, including matched-pairs design                                                                                                                                                                                                                         |
| 4 | Probability, Random Variables,<br>and Probability Distributions | P.3 Exploring Random Processes<br>11.1 Basics of Probability                                                                                                                                | Interpreting probability, including long-run<br>relative frequency; "Law of Large Numbers"<br>concept; simulation of random behavior<br>and probability distributions                                                                                                           |

|                          | <ul> <li>11.2 Probability Rules</li> <li>11.3 Conditional Probability and Independence</li> <li>11.4 Discrete Random Variables</li> <li>11.6 Binomial and Geometric Random Variables</li> <li>11.5 Random Variable Rules</li> </ul>                                                                                                                                                                                                                                                                              | Addition rule, multiplication rule,<br>conditional probability and independence<br>Discrete random variables and their<br>probability distributions, including binomial<br>and geometric<br>Mean (expected value) and standard<br>deviation of a random variable, and linear<br>transformations of a random variable;<br>notion of independence versus<br>dependence; mean and standard deviation<br>for sums and differences of independent<br>random variables |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 Sampling Distributions | <ul> <li>1.5 Inference for a Single Proportion: Theory-<br/>Based Approach</li> <li>1.6 Sampling Distribution of a Sample Proportion</li> <li>11.8 Revisiting Theory-Based Approximations of<br/>Sampling Distributions</li> <li>2.2 Inference for a Single Quantitative Variable</li> <li>2.2 Part 2 Sampling Distribution of a Sample Mean</li> <li>11.8 Revisiting Theory-Based Approximations of<br/>Sampling Distributions</li> <li>5.2 Comparing Two Proportions: Simulation-Based<br/>Approach</li> </ul> | Sampling distribution of a sample<br>proportion; Central Limit Theorem<br>Sampling distribution of a sample mean;<br>Central Limit Theorem<br>Sampling distribution of a difference<br>between two independent sample                                                                                                                                                                                                                                            |

|   |                                                | <ul> <li>6.2 Comparing Two Means: Simulation-Based</li> <li>Approach</li> <li>6.3 Comparing Two Means: Theory-Based</li> <li>Approach</li> </ul>                                                                                                 | Sampling distribution of a difference<br>between two independent sample means                                                                                                                                                                                               |
|---|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                | Chapters 1-3, 5-8, 10                                                                                                                                                                                                                            | Simulation of sampling distributions                                                                                                                                                                                                                                        |
| 6 | Inference for Categorical Data:<br>Proportions | INFERENCE FOR A SINGLE PROPORTION<br>1.1 Introduction to Chance Models<br>1.4 What Impacts Strength of Evidence?<br>1.5 Inference for a Single Proportion: Theory-                                                                               | Logic of significance testing; null and<br>alternative hypotheses; p-values; one- and<br>two-sided tests<br>Large sample test for a proportion                                                                                                                              |
|   |                                                | Based Approach<br>1.7 One-Proportion z-Test for a Population<br>Proportion                                                                                                                                                                       |                                                                                                                                                                                                                                                                             |
|   |                                                | 2.3 Errors and Significance                                                                                                                                                                                                                      | Type I and type II errors and power                                                                                                                                                                                                                                         |
|   |                                                | <ul> <li>3.1 Statistical Inference: Confidence Intervals</li> <li>3.2 2SD and Theory-Based Confidence Intervals for<br/>a Single Proportion</li> <li>3.2 Part 2 One-Proportion z-Interval for a Single<br/>Proportion</li> </ul>                 | Estimating population parameters and<br>margin of error; properties of point<br>estimators, including unbiasedness and<br>variability; logic of confidence intervals,<br>meaning of confidence level and<br>confidence intervals, and properties of<br>confidence intervals |
|   |                                                | <ul> <li>INFERENCE FOR A DIFFERENCE BETWEEN TWO<br/>PROPORTIONS</li> <li>5.3 Comparing Two Proportions: Theory-Based<br/>Approach</li> <li>5.4 Confidence Interval and Significance Test for a<br/>Difference Between Two Proportions</li> </ul> | Large sample confidence interval for a<br>difference between two proportions<br>Large sample test for a difference between<br>two proportions                                                                                                                               |

| 7 | Inference for Quantitative Data:              | INFERENCE FOR A SINGLE MEAN                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                  |
|---|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|   | Means                                         | <ul> <li>2.2 Inference for a Single Quantitative Variable</li> <li>2.2 Part 3 One-Sample t-Test for a Population</li> <li>Mean</li> <li>3.3 2SD and Theory-Based Confidence Intervals for</li> <li>a Single Mean</li> <li>3.3 Part 2 One-Sample t-Interval for a Single Mean</li> </ul>                                                                                                                                                                   | Inference for a single mean                                                                                      |
|   |                                               | <ul> <li>INFERENCE FOR A DIFFERENCE BETWEEN TWO<br/>MEANS (UNPAIRED AND PAIRED)</li> <li>6.3 Comparing Two Means: Theory-Based<br/>Approach</li> <li>6.4 Confidence Interval and Significance Test for a<br/>Difference Between Two Independent Means</li> <li>7.3 Theory-Based Approach to Analyzing Data<br/>from Paired Samples</li> <li>7.4 Confidence Interval and Significance Test for a<br/>Difference Between Two Means (Paired Data)</li> </ul> | Inference for a difference between two means (paired and unpaired)                                               |
| 8 | Inference for Categorical Data:<br>Chi Square | <ul> <li>8.1 Comparing Multiple Proportions: Simulation-<br/>Based Approach</li> <li>8.2 Comparing Multiple Proportions: Theory-Based<br/>Approach</li> <li>8.3 Chi-Square Test for Homogeneity of<br/>Proportions and Independence</li> <li>8.4 Chi-Square Goodness of Fit Test</li> </ul>                                                                                                                                                               | Chi-Square test for homogeneity of<br>proportions, independence and goodness<br>of fit (one- and two-way tables) |
| 9 | Inference for Quantitative Data:<br>Slopes    | <ul> <li>10.4 Inference for the Regression Slope:</li> <li>Simulation-Based Approach</li> <li>10.5 Inference for the Regression Slope: Theory-<br/>Based Approach</li> <li>10.6 Confidence Interval and Significance Test for<br/>the Slope of a Regression Line</li> </ul>                                                                                                                                                                               | Inference for the slope of a regression line                                                                     |

\*AP® Statistics Course and Exam Description Effective Fall 2019