
STUDENT GAINS IN CONCEPTUAL UNDERSTANDING IN INTRODUCTORY 
STATISTICS WITH AND WITHOUT A CURRICULUM FOCUSED  

ON SIMULATION-BASED INFERENCE 
 

Beth Chance1, Stephanie Mendoza1, and Nathan Tintle2 
1Department of Statistics, Cal Poly – San Luis Obispo, CA 93401 

2Department of Math, Computer Science & Statistics, Dordt College, Sioux Center, IA 
bchance@calpoly.edu 

 
Using “simulation-based inference” (SBI) such as randomization tests as the primary vehicle for 
introducing students to the logic and scope of statistical inference has been advocated with the 
potential of improving student understanding of statistical inference, as well as the statistical 
investigative process as a whole. Moving beyond the individual class activity, entirely revised 
introductory statistics curricula centering on these ideas have been developed and tested. In this 
presentation we will discuss three years of cross-institutional tertiary-level data in the United 
States comparing SBI-focused curricula and non-SBI curricula (roughly 15,000 students). We 
examine several pre/post measures of conceptual understanding in the introductory algebra-based 
course, using hierarchical modelling to incorporate student-level, instructor-level, and 
institutional-level covariates. 
 
INTRODUCTION 

The demands for a statistically literate society are increasing, and the introductory 
statistics course (“Stat 101”) remains the primary venue for learning statistics for the majority of 
secondary and tertiary students. Despite three decades of very fruitful activity in the areas of 
pedagogy, assessment results have not shown dramatic gains in student understanding or 
appreciation of statistics. Surveys have also shown that although many instructors have made 
changes in their courses with respect to technology, use of genuine data, and projects, the changes 
have been slow in developing (Garfield, 2000).  

More recent calls for reform have focused on not only pedagogy and assessment methods, 
but also course content. One example is Cobb’s 2007 call to center the introductory curriculum 
around the reasoning and logic of statistical inference, rather than the normal distribution. Recent 
technology tools enable students to use simulation-methods, e.g., bootstrapping and randomization 
tests, to develop confidence intervals and p-values with minimal mathematical distractions. This 
allows students to focus more closely on the statistical investigation process as a whole rather than 
seeing data collection, data exploration, probability, and statistical inference as unrelated units of 
instruction. Preliminary assessment results, primarily at single institutions, have shown promising 
benefits to this approach (e.g., Tintle et al., 2011, 2012; Beckman, delMas, & Garfield, to appear; 
Chance & McGaughey, 2014; Hildreth, Robison-Cox, & Schmidt, to appear 2018; Maurer & 
Lock, 2015). 

The last few years have seen several full curricula/textbooks for introductory algebra-
based statistics developed which focus on “simulation-based inference” (SBI) including 
Introduction to Statistics Investigations (ISI; Tintle et al.), Statistics: Unlocking the Power of Data 
(Lock5; Lock et al.), Statistical Reasoning in Sports (Tabor & Franklin), Statistical Thinking: A 
simulation approach to modeling uncertainty (Zieffler & Catalysts for Change), and Introductory 
Statistics with Randomization and Simulation (OpenIntro). These textbooks vary in the depth of 
their treatment of simulation-based methods, the choice of simulation methods, the sequencing of 
topics, and the technology tools, but all provide an alternative introduction to statistical reasoning 
that focuses on using simulation to help students understand randomness and inference. 

As part of an NSF grant for developing the ISI curriculum, our team also sought to assess 
students’ development of conceptual understanding in the introductory course, comparing the SBI 
courses to other curricula across scores of institutions. After pilot-testing the instrument, we now 
have three years of data across approximately 15,000 students. The discussion below will describe 
our methods and implementation of our assessment project. These data allow us to compare 
student pre/post performance and attitudes across several curricula, while incorporating student 
level, section level, and instructor level covariates. Below we focus on these textbook 



comparisons. More details on the hierarchical regression models, which can help identify which 
factors are most highly related to improved performance and perhaps which teaching decisions 
have the most impact, will be provided in the presentation. 

 
SBI CURRICULA 
 The main distinction of SBI curricula is using simulation as the primary vehicle for 
introducing ideas in statistical inference. In the “Lock5” curricula, students learn methods of 
bootstrapping and randomization tests for confidence intervals and tests of significance before 
carrying out any formal inference procedures. Free on-line applets (StatKey) are used to generate 
bootstrap and null distributions to estimate percentile intervals and p-values. This understanding is 
then built upon as students move through more standard “theory-based” inference procedures. 
Similarly, the ISI curricula uses free on-line applets (www.rossmanchance.com/applets/) focusing 
on estimating p-values and standard errors. One distinction from the Lock5 text is this SBI 
material is discussed very early in the course (e.g., week 1) as one piece of the overall statistical 
investigation process (Roy, 2014), and a spiral approach is used to revisit these ideas with new 
scenarios (e.g., comparing groups, association). The CATALST curriculum (Garfield, delMas, & 
Zieffler, 2012) uses TinkerplotsTM to explore the same ideas, focusing on chance models and 
simulation, however the curriculum does not cover as many of the traditional testing procedures. 
Other instructors have developed their own materials that are hybrids of these approaches (e.g., 
Hildreth, Robison-Cox, & Schmidt, to appear). In the analyses below, we differentiate between 
ISI, ISI-first (instructors using the ISI materials for their first time), other SBI (e.g., Lock 5 and 
CATALST), non-SBI, and “other” (materials developed and used at the individual institution) 
courses. (We did not review the other materials in detail to classify them, but several are known to 
be heavily influenced by SBI.) The non-SBI courses were also divided into what the first author 
considered “GAISE-compliant” and “non GAISE-compliant” (non SBI-2) textbooks 
(http://www.amstat.org/asa/files/pdfs/ GAISE/GaiseCollege_Full.pdf). 
 
METHODS 
 A 32-question multiple-choice concept inventory was developed by the ISI author team, 
modelled after the CAOS instrument from the University of Minnesota (delMas, Garfield, Ooms, 
and Chance, 2007). Topics on this inventory include data collection, simulation/probability, 
descriptive statistics, confidence intervals, significance tests, and scope of conclusions. This 
inventory was combined with the SATS-36 instrument (Student Attitudes Toward Statistics; 
Schau, 2003) into one instrument. (See Tintle et al., 2018 for a report on the validity and reliability 
of the instrument.) Faculty were recruited to participate using email listservs (e.g., ASA Section on 
Statistics Education, Isolated Statisticians, SIGMAA on statistics education). Faculty were asked 
to give their students the combined instrument through SurveyMonkey during the first and last 
weeks of the term. Students were given the option to opt out of their results being used for research 
purposes. Faculty were encouraged to give their students some incentive (e.g., credit on a 
homework assignment) for participating. Faculty were also asked to complete a survey about their 
own background and teaching methods as well as details of the course (e.g., number of students, 
meeting time, use of active learning, familiarity with the GAISE guidelines, type of institution).  
 
IMPLEMENTATION 
 The primary response of interest is students’ performance on the concept inventory. To 
adjust for pre-test scores and possible ceiling effects, we utilize achievable gain = gain/(1–pre) as 
our measure of student improvement (aka “single-student normalized gain”, e.g., Colt, Davoudi, 
Murgu, & Zamanian Rohani, 2011; Hake, 1998). Students with an achievable gain of -2 and lower 
(e.g., 78% correct on the pre-test, 33% correct on the post-test) were removed from the analyses. 
Students who opted out or who answered less than 60% of the questions on either test were also 
removed. (This includes students who took a “condensed” version of the post-test with 10 
questions.) We felt these observations were not trustworthy measures of student knowledge.  
 Examples of the lengthy data cleaning tasks include reconciling discrepancies in 
demographic data between pre and post administrations (e.g., students changing sex, self-reported 
GPAs, age) and tracking students who changed instructors after the pre-test. Students also self-



reported SAT or ACT scores which were converted into a z-score based on the means and standard 
deviations of each scale in our dataset (which were similar to nationally reported values). Text 
responses to numeric questions were converted (e.g., “I think my GPA is around 3.2”). The 
cleaned data set was merged with a cleaned version of the teacher inventory.  
 The instrument was field tested in Fall 2012 and used with approximately 2000 students in 
2013/2014 (after cleaning), with mostly ISI instructors. In Year 1 of the study (2014/2015), after a 
few modifications, the instrument was given to over 3,000 students across 70 instructors and 38 
institutions. In Year 2, this was expanded to 95 instructors at 57 institutions. In Year 3, this was 
expanded to over 8,000 students for 95 instructors across 78 institutions.  

After data cleaning, the final pre/post data set for Year 3 consisted of 4440 students, 227 
instructor-terms (some instructors participated in both fall and spring), and 70 institutions, mostly 
universities (n = 2305) and four-year colleges (n = 1182) with some community or two-year 
colleges (n = 263) and high schools (n = 606, year-long course). These gave us 104 sections using 
ISI (49 for the first time), 45 using other SBI texts, and 106 not using an SBI curriculum (39 
classified as not GAISE compliant). One section using a text with a calculus prerequisite was 
removed.  
 
RESULTS 
Gains in conceptual understanding 
 Table 1 shows the mean achievable gain scores across the textbooks for the three years. 
It’s important to note that the achievable gains are modest, but we see a consistent pattern across 
the years: a tendency for higher gains with the ISI textbook, regardless of whether or not the 
instructor is using the text for the first time, and a similar but slightly lower improvement with the 
other SBI texts. Typically the means are lower for the non-SBI students, especially those in 
courses using textbooks that were not considered GAISE compliant. The last row shows that in 
Year 3 scores generally declined if the high school (year-long) sections are removed from the 
analysis, but also showing stronger textbook effects. There is still considerable within-section 
variability (Figure 1) that we explored further using hierarchical regression models incorporating 
student and instructor level data. This pattern has held true even after adjusting for student 
background (e.g., SAT/ACT z-score, GPA, pre-test score). 
 

Table 1. Mean achievable gain scores for 2014/2015 – 2016/2017 school years, across textbooks 
 Overall ISI ISI 1st Other SBI Not SBI Not SBI-2 
Year 1 0.170 0.216 0.214 0.195 0.124 0.061 
Year 2 0.108 0.170 0.160 0.132 0.076 0.030 
Year 3 0.169 0.191 0.191 0.169 0.166 0.101 
Year 3 (no HS) 0.147 0.179 0.177 0.169 0.104 0.060 

 

 
Figure 1. Boxplots of achievable gain by textbook for 227 instructor-terms (Year 3).  

Red lines indicate averages by textbook classification. 



 One observation of interest from the hierarchical models is that Carnegie classification 
(e.g., primarily undergraduate institution vs. research university) explains more variation in the 
data than the section or instructor or institution. For student level variables, the strongest predictors 
of achievable gain include pre-test, SAT/ACT z-score, and GPA. An analysis by Tintle et al. (to 
appear) conditioning on “student preparation” (standardized pre-college test scores) showed equal 
benefits to both more quantitatively and less quantitatively mature students. A preliminary analysis 
(Chance, Wong, & Tintle, 2016) showed evidence of a quadratic relationship with GPA as well as 
interactions with student and instructor sex. These relationships will be explored further in 
subsequent analyses. 
 
Student attitudes 
 The SATS has been used by several authors to explore changes in student attitudes in 
introductory statistics course. The SATS consists of several questions within 6 subscales: affect, 
cognitive competence, difficulty, effort, interest, and value. However, few studies, with a few 
notable exceptions, have found large improvements or even changes in student attitudes from the 
first course. (See for example the 2012 SERJ special issue, 11(2).) Table 2 shows the gain (post-
pre) in the attitude subscales across the textbooks for Year 3. (Cronbach α  values were quite 
comparable to other studies as well.) 
 

Table 2. Year 3 attitude changes from SATS across textbook type (post – pre), n = 4414 
 ISI ISI 1st Other SBI Not SBI Not SBI-2 Own 
n  600 662 1103 1279 291 479 
Affect 0.235 0.074 0.174 0.033 0.021 0.080 
Cog Comp 0.174 -0.043 -0.018 -0.077 -0.194 0.048 
Difficulty 0.405 0.227 0.236 0.189 0.190 0.314 
Effort -0.967 -1.01 -0.920 -1.03 -1.23 -0.943 
Interest -0.565 -0.601 -0.449 -0.515 -0.740 -0.728 
Value -0.250 -0.312 -0.230 -0.270 -0.372 -0.371 

 
 The SBI courses do show more positive gains on the affect and cognitive competence 
scales. The positive changes in difficulty imply the students tended to find the course less difficult 
than expected (more so for the SBI courses). The negative changes in effort imply the students 
ended up putting in less work than they anticipated. Unfortunately, we also see negative changes in 
the interest and value scales, though less so with the SBI curricula. 
 
Question by question comparisons on concept inventory 

Below (Table 3) we highlight some individual questions from our concept inventory using 
the 2016-2017 data (4646 students on the pre-test, 5166 students on the post-test). One concern 
with a course focused on simulation-based inference is a loss of time on other topics (e.g., 
descriptive statistics). Our results indicate that most recently, students in simulation-based 
inference courses show similar gains in understanding as students in the non-simulation-based 
curricula. For example, Question 22 on the concept inventory requires students to realize that they 
can compare two distributions of a quantitative variable even though the groups have unequal 
sample sizes. Students entering the college course show proficiency on this topic, increasing by the 
end of the course across all the curricula. 

As hoped, students in the SBI curricula do show large gains in questions related the 
reasoning of statistical inference. Question 27 on the concept inventory asks students whether a 
research is hoping for a large or small p-value to establish their hypothesis. Students are near 50/50 
entering the course, but students leave the course with better understanding of the goals of 
statistical inference, especially in the simulation-based curricula. Students also demonstrated 
improvement in recognizing a correct p-value interpretation (Q29) as well as invalidating an 
incorrect interpretation (Q28, probability the null is true). 

Some questions still showed little improvement or even decreases in performance. For 
example, Question 24 provides an insignificant p-value and asks whether that provides evidence 



for the null. All groups performed more poorly on this question on the posttest. Question 26 asked 
students to estimate the sample sized needed for a 3% margin of error in a survey of US adults 
(population size 310 million). Students improved but still performed very poorly on this question. 
 Students in the SBI courses showed more improvement in (informally) recognizing a 
result of 13 successes in 15 attempts as unlikely to happen by random chance (Q43) and in 
recognizing a correct description of a simulation (Q38) but did not outperform their peers in 
recognizing an inappropriate simulation plan (Q37, repeat the experiment many times).  
 

Table 3. Question by question comparisons of interest (proportion correct responses) 
  ISI ISI 1st Other SBI Non SBI Non SBI2 

Q22: comparing distributions Pre 0.69 0.71 0.70 0.73 0.68 
Post 0.86 0.85 0.85 0.81 0.69 

Q27: want large or small p-
value 

Pre 0.42 0.36 0.48 0.40 0.29 
Post 0.92 0.88 0.83 0.77 0.60 

Q29: correct p-value 
interpretation 

Pre 0.43 0.42 0.42 0.44 0.35 
Post 0.65 0.65 0.59 0.52 0.44 

Q28: p-value is prob of null Pre 0.56 0.51 0.58 0.57 0.44 
Post 0.83 0.82 0.79 0.76 0.57 

Q24: evidence for null Pre 0.83 0.80 0.78 0.83 0.81 
Post 0.65 0.68 0.66 0.67 0.60 

Q26: margin of error Pre 0.13 0.12 0.16 0.14 0.13 
Post 0.24 0.27 0.24 0.33 0.21 

Q43: 13/15 Pre 0.41 0.40 0.40 0.40 0.35 
Post 0.62 0.56 0.52 0.44 0.34 

Q38: correct simulation Pre 0.56 0.64 0.56 0.52 0.47 
Post 0.88 0.87 0.76 0.65 0.53 

Q37: incorrect simulation Pre 0.39 0.37 0.39 0.44 0.35 
Post 0.39 0.36 0.44 0.46 0.33 

 
 These results suggest that while students in SBI courses perform on par with their peers on 
many questions and above their peers on others, there are still areas for improvement across all the 
curricula. In particular, the roles of the null hypothesis and sample size in the simulation models 
needs to be better addressed. 
 
DISCUSSION 

Across three years of data (about 5,000 students per year after cleaning), we are seeing 
some consistent comparisons of the curricula, with courses that fully integrate simulation-based 
inference seeing slightly higher gains in student achievement on average. These differences have 
also been consistent in hierarchical models that adjust for student-level (e.g., GPA, ACT/SAT 
scores) and instructor-level data discussed elsewhere. These trends have also been consistent 
across the types of questions on the concept inventory. Still, there remains substantial within-
section variation for further exploration. Further analyses will also consider 
• Which student and instructor level variables explain the most variation in achievable gain? Are 

there interactions, e.g., between student pre-attitude and instructor gender or background? 
• When the concept and attitude surveys are given in one instrument, does it matter which is 

given first? What is the role of incentives on student performance on these instruments? 
• Do we see similar differences across textbooks four months after the course? 
• Can we conjecture a learning trajectory of students understanding of statistical inference based 

on the number of exposures to simulation-based inference? 
We also plan to make our dataset available to other researchers after the final cleaning steps. 
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